

Use of k₀-INAA at the IJS in CRM production

Radojko Jaćimović^{1,2}

¹Jožef Stefan Institute, Ljubljana, Slovenia ²Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

16 May 2018 Workshop, ENVCRM, TUBITAK UME, Gebze, Turkey

Introduction

Two features of (n, γ) reactor NAA are making its standardization potentially easy and accurate:

- 1. the high penetrability of matter for neutrons
- 2. existence of a delayed signal (besides the prompt gamma's).

Hence, standard and sample can be excited simultaneously and induced signals of both can be measured successively after a suited time following the end of irradiation.

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

Institut

Jožef Stefan"

ubljana, Slovenija

Introduction

Other consequences:

- NAA is a bulk analysis method with multi-element capability (element concentration and measured signal is nearly matrix-independent).
- Matrix preparation can be kept simple.
- Treatment of sample (and standard) after irradiation is possible (enabling etching, dissolution, chemical separation - RNAA).
- High sensitivity (down to the 10⁻⁶, 10⁻⁹ or even to the 10⁻¹² g/g) attainable for many elements.
- Reference method for certification of new CRMs or RMs.

Introduction

Institut
 "Jožef Stefan"
 Ljubljana, Slovenija

SPECTROCHIMICA ACTA

Spectrochimica Acta Part B 66 (2011) 193-241

Contents lists available at ScienceDirect

Spectrochimica Acta Part B

journal homepage: www.elsevier.com/locate/sab

Review

Neutron activation analysis: A primary method of measurement $\stackrel{\leftrightarrow}{\sim}$

Robert R. Greenberg^{a,*}, Peter Bode^b, Elisabete A. De Nadai Fernandes^c

^a National Institute of Standards and Technology, Gaithersburg, MD 20899-8395, USA

^b Delft University of Technology, Delft, The Netherlands

^c Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil

ARTICLE INFO

Article history: Received 12 September 2010 Accepted 23 December 2010 Available online 27 January 2011

Keywords: Neutron activation analysis Metrology Primary method of measurement Uncertainty budget Metrological traceability ABSTRACT

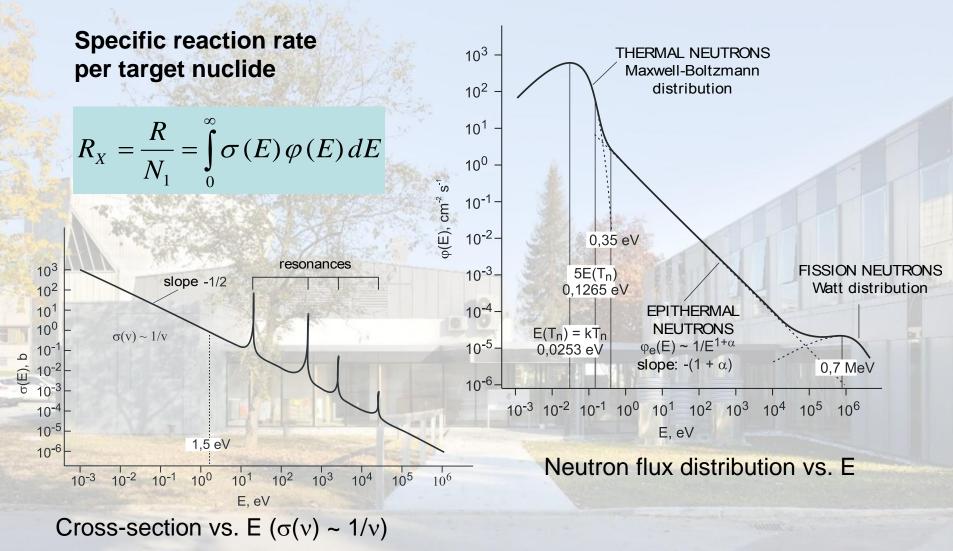
Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method. Published by Elsevier B.V.

A+1 Z+1

Introduction

Nuclear reactions: - direct (B + a \rightarrow Y + b); ~ 10⁻²² - 10⁻²¹ s - meta stable (B + a \rightarrow X* \rightarrow Y + b); ~ 10⁻¹⁶ - 10⁻¹⁴ s

n


 $^{A}_{Z}\mathbf{B}$

[e. g. $n + \frac{197}{79}Au \rightarrow \frac{198}{79}Au^* \rightarrow \frac{198}{79}Au \rightarrow \frac{198}{80}Hg^* \rightarrow \frac{198}{80}Hg$] A typical (n, γ) reaction with β ⁻ decay. Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

6

(n, γ) reaction rate

f Stefan" (n, γ) Activation Analysis: Ljubljana, Slovenija principles of standardization

The mass of the element: $w_{a} = \frac{M_{a}}{N_{A} \Theta_{a} \gamma_{a}} \frac{\left(\frac{N_{p}/t_{m}}{SDC}\right)_{a}}{(G_{th,a} \varphi_{th,a} \sigma_{0,a} + G_{e,a} \varphi_{e,a} I_{0,a}(\alpha)) \varepsilon_{p,a}}$

Relative standardization

Single-comparator standardization:

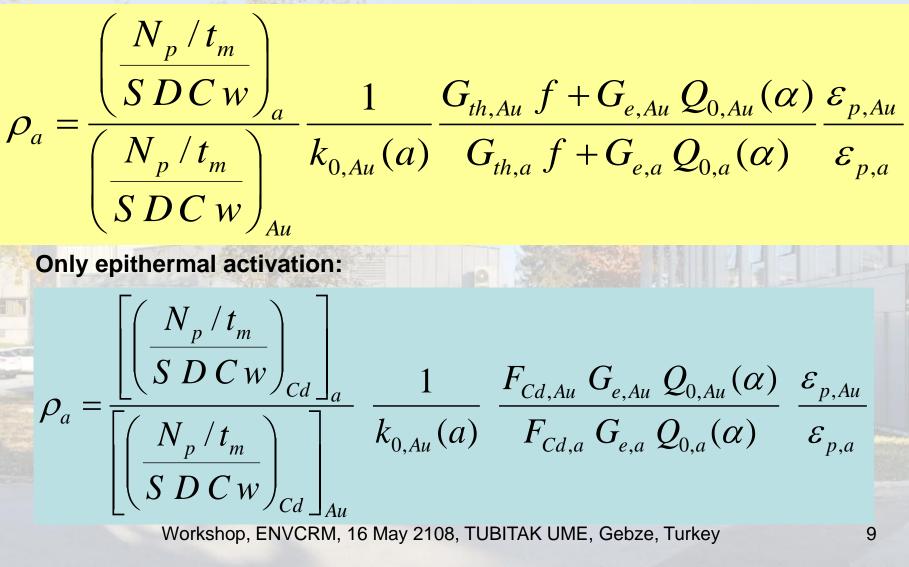
- use of k-factors (experimentally determined)

Absolute (parametric) standardization:

- condition that ϕ_{th} , f and α remain constant during irradiation

- parameters M, Θ , γ , σ_0 for both taken from literature (accurate known!)

k_n-standardization: KAYZERO/SOLCOI


k₀-standardization: KAYZERO/SOLCOI

- k₀-standardization method of NAA was launched in the 1970s
- **SINGCOMP** program: 1987 written for VAX
- KAYZERO/SOLCOI program: 1994, 1996, 2003 written for DOS and in 2004 written for Windows
- Kayzero for Windows (KayWin[®]) ver. 2.42 from March 2011
 - KAYZERO library 144 nuclides (68 elements)
 - k₀-NAA became widespread as a practical analytical tool used to analyse different sample matrices
- Kayzero for Windows (KayWin[®]) ver. 3.36 from March 2018

k₀-standardization: KAYZERO/SOLCOI

Thermal and epithermal activation:

k₀-library info:

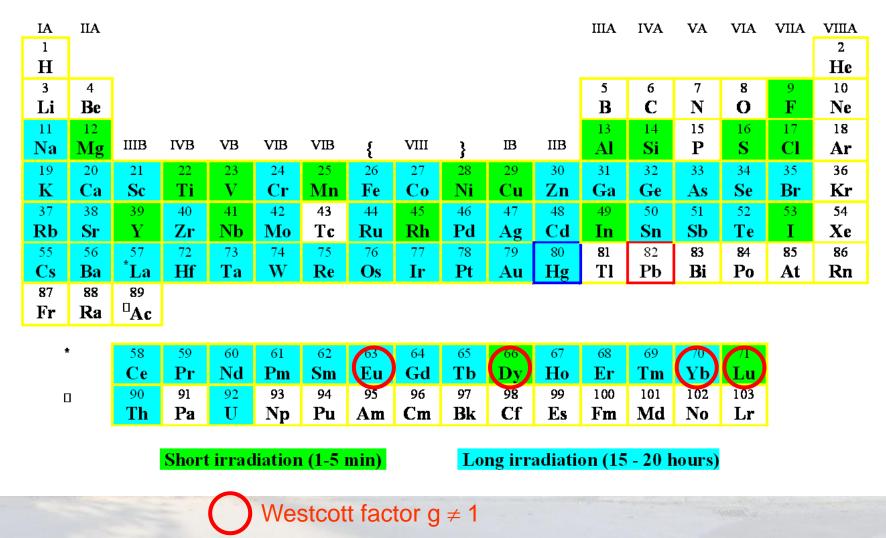
http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Nuclear_Data_SC.html

J Radioanal Nucl Chem (2014) 300:589–592 DOI 10.1007/s10967-014-3085-2

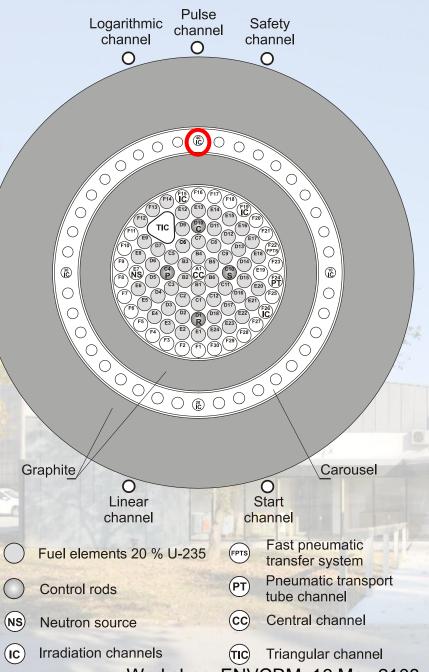
The 2012 recommended k_0 database

R. Jaćimović · F. De Corte · G. Kennedy · P. Vermaercke · Z. Revay

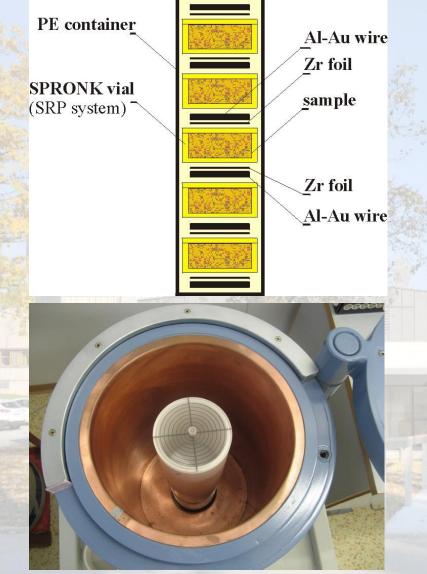
Received: 31 October 2013/Published online: 16 March 2014 © Akadémiai Kiadó, Budapest, Hungary 2014


Abstract Many overview papers have been published with recommended nuclear data for use in the k_0 method of NAA and made available in scientific journals or in the form of a downloadable database. In September 2009, the k_0 -International Scientific Committee formed the k_0 -Nuclear Data Committee (k_0 -NDC) whose first task was to collect all these data at a single place to facilitate updating and to correct any evident errors. This task of the k_0 -NDC was successfully completed in March 2012 when the 2012 recommended k_0 database was published in the form of an Excel file.

Keywords k_0 method of NAA $\cdot k_0$ database \cdot Nuclear data \cdot The IUPAC k_0 database


[1], whereby absolute nuclear data were replaced by k_0 factors, which were experimentally determined. Compared to the relative method, the k_0 method greatly reduces the need for the preparation of standards. It uses gold as the standard and composite nuclear constants for analytically interesting nuclides are normalised to gold nuclear data. During the last 30 years the k_0 method has been introduced in many laboratories around the world for multi-element NAA and the method is continuously improving, along with its nuclear data [2–7]. In 2003, these data were made available by the International Union of Pure and Applied Chemistry (IUPAC) in the form of the Access database (http://www.iupac.org/home/projects/project-db/project-details.html?tx_wfqbe_pi1%5Bproject_nr%5D=2001-075-1-500) created by Kolotov and De Corte [8, 9]. In the process of validation of the consistency of the

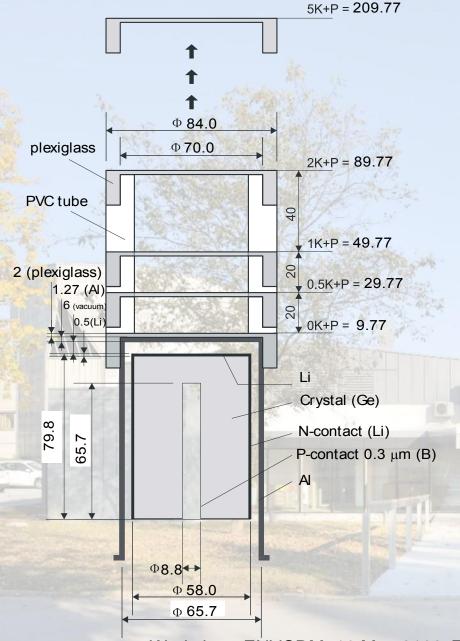
Periodic table of the elements (elements in the *k*₀-library)


TRIGA Mark II reactor (250 kW)

Short and long irradiation in the CC:
 φ_{th} ~ 10·10¹² cm⁻² s⁻¹

- Short irradiation in the PT and in the FPTS (up-to 30 min.) $\phi_{th} \sim 3.5 \cdot 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$

- Long irradiation in the IC-40 (typically 20 hours) $\phi_{th} \sim 1.1 \cdot 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$


k₀-INAA analytical procedure

- Sample and standard are prepared in sandwich form and irradiated in the carousel facility of the TRIGA Mark II reactor (250 kW) Measurement on an HPGe absolutely calibrated detector - Evaluation of the spectrum by HyperLab program - Calculation of the effective solid angle between sample and **HPGe** detector

- Calculation of element concentration by KayWin[®]

HPGe detector

HPGe closed end coaxial detector (OR4) 40% relative efficiency at 1332.5 keV (⁶⁰Co) ("fine tuning" dimensions are in mm)

Advantages and disadvantages to k_0 -NAA

- Non-destructive technique which can be applied for different matrices (water, tissues, lichens, aerosols, soils, sediments, sludge's, geological samples, minerals, ...)
- \succ k_0 -NAA as INAA or RNAA form
- Very small matrix interferences due to behaviour of neutronsample interactions
- Measuring range from µg/kg up to kg/kg (100%)
 Simultaneously determination of relatively a lot of elements
 Needing absolute calibrated HPGe detector and redetermination of parameters of the neutron spectra when reactor core is change
 - Loses of volatilized elements during irradiation (e.g. Hg)
- No speciation for an element
- For some elements limit of detection (LD) is high and RNAA or other techniques should be applied

k₀-NAA quality assessment

Journal of Radioanalytical and Nuclear Chemistry, Vol. 257, No. 3 (2003) 659-663

k₀-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software

R. Jaćimović,¹* B. Smodiš,²** T. Bučar,¹ P. Stegnar¹

¹ Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, P.O. Box 3000, SI-1000 Ljubljana, Slovenia ² Division of Human Health, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria

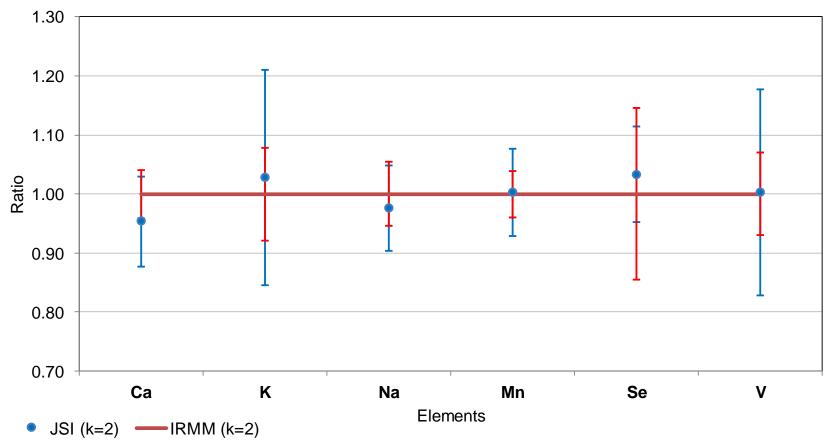
(Received February 15, 2003)

A suite of natural matrix reference materials (RMs) were used to assess the quality of analytical results obtained by k_0 -instrumental neutron activation analysis (k_0 -INAA) at the Jožef Stefan Institute (IJS). Five certified reference materials (CRMs) from the Institute for Reference Materials and Measurements (IRMM), two standard reference materials (SRMs) from the National Institute of Standards and Technology (NIST), three RMs from the International Atomic Energy Agency (IAEA) and one RM from IJS were analyzed. Altogether, results for twenty-four elements in inorganic matrices and twenty-nine elements in organic matrices, obtained by k_0 -INAA, were compared to certified values. Results obtained show good agreement with certified or assigned values except for Fe, La, Nd, Sm and U in inorganic matrices, and Ag, Al and Cr in organic matrices.

Participation of IJS/O-2 in certification process of new RMs or CRMs

Organizer	Material	Year	Analytes			
INCT	Oriental Basma Tobacco Leaves (INCT-OBTL-5)	2008	As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, U, Yb, Zn and Zr			
INCT	Polish Virginia Tobacco Leaves (INCT-PVTL-6)	2008	As, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Mo, Na, Nd, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, Zn and Zr			
INCT	MODAS-2 Bottom Sediment	2013	As, Ba, Co, Cr, Cs, Eu, Fe, Hf, Hg, La, Sb, Sc, Sm, Sr, Tb, Th, U, Zn, Br, Ca, Ce, K, Na, Nd, Rb, Ta, Yb and Zr			
IAEA	Determination of Trace Elements in IAEA-452 Biota Sample	2008	Ag, As, Br, Ca, Cd, Co, Cr, Cs, Fe, Hg, K, Mo, Na Rb, Sb, Sc, Se, Sr and Zn			
IAEA	IAEA IAEA-CU-2010-02 World-wide open proficiency test: Determination of trace elements in sewage sludge		As, Ba, Co, Cr, Fe, Hg, Se, Sr and Zn			
IAEA	IAEA Determination of Trace Elements in Marine Biota IAEA-461		Ag, As, Br, Ca, Ce, CH_3Hg , Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Rb, Sc, Se, Sm, Sr, Th, U, Yb and Zn			
IAEA	IAEA IAEA-MEL CRM Oyster		Ag, As, Br, Ca, CH ₃ Hg, Co, Cr, Cs, Fe, Hg, K, Na, Rb, Sc, Se, U and Zn			
ISPRA	ISPRA RM021 Lagon Sediment	2010	As, Co and Mn			
ISPRA	ISPRA RM039 Lake Sediment	2013	As and Co			
BAM	BAM YSZO Yttrium Stabilized Zirconium Oxide ERM®-ED105	2013	Th, U and Hf			

Participation of IJS/O-2 in certification process of new RMs or CRMs



Organizer	Material	Year	Analytes			
IRMM	IRMM BCR-277R estuarine sediment, BCR-280R lake sediment and BCR-320R channel sediment		Al, As, Ba, Br, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Hf, Hg, I, K, La, Mn, Na, Nd, Ni, Rb, Sb, Sc, Se Sm, Sn, Sr, Ta, Tb, Ti, U, V, Yb and Zn			
IRMM	Two polyethylene reference materials ERM [®] -EC680k and ERM [®] -EC681k	2006	As, Cd, Cl, Cr, Hg, Sb and Sn			
IRMM	Two polymer reference materials ERM-EC590 & ERM- EC591	2008	Br and Sb			
	ERM-CD281 rye grass	2008	As, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn and Zn			
IRMM ERM-CZ120 Fine Dust			As and Cd			
IRMM	Total content and aqua regia extractable content of Hg in Loam Soil ERM®-CC141	2010	Hg			
IRMM	IRMM ERM®-CE278k mussel tissue		Ag, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Rb, Se, Sr and Zn			
IRMM	ERM [®] -DB001human hair	2011	As, Cd, Cu, Hg, Se and Zn			
IRMM	ERM [®] -CD200 Bladderwrack (Fucus vesiculosus)	2011	As, Cd, Hg, Se and Zn			
IRMM	ERM [®] -BD150 and ERM [®] -BD151 skimmed milk powders	2012	Ca, Cl, K, Mg, Na, Cd, Cu, Fe, Hg, I, Mn, Pb, Se and Zn			
IRMM	RMM ERM [®] -EF411 (hard coal), ERM [®] -EF412 (brown coal) ERM [®] -EF413 (furnace coke)		As, Co, Cr, Mn, Sb, Se, V, Zn, Ca, Mg, Na, I and Hg			
IRMM	Determination of trace elements in Lu foil	2013	Major elements and trace elements			
IRMM	Mass fraction in Al-0.1%Au alloy: ERM [®] -EB530A, B and C	2013	Au			
IRMM	The minor elements and trace elements mass fraction in TiAl6V4: BCR [®] -089	2013	Fe, Cr, Mo, Zr, Cu, Co, Mn, W, Zn, Hf, Ta, Hg, La Ce, Sb, As and Ga			

Comparison of k₀-INAA with ERM-EF412 Brown coal

ERM-EF412 Brown coal

Note: JSI reported also data for As, Co, Cr, Sb, Zn, Mg and CI obtained by k₀-INAA. For some elements only indicative value were assigned. Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey 19

Comparison of k₀-INAA with ERM-EF412 Brown coal

ERM-EF412 Brown coal

Accreditation Certificate LP-090

2009-06-01

Reg. št. / Ref. No.: 811-44/06-50 Datum izdaje / Issued on: 1. junij 2009 Zamenjuje izdajo z dne / Replaces Annex datect -Vajamosi akrotiterja je mogože prevenit na speleni strani SA, www.sa.gov.sl. Imornáton o novema cacrodkoto katolika le savidebe dri te SA websile, www.sa.gov.sl.

> PRILOGA K AKREDITACIJSKI LISTINI Annex to the accreditation certificate

> > LP-090

1 AKREDITIRANI ORGAN / Accredited body

Institut Jožef Stefan

Jamova cesta 39, 1000 Ljubljana Odsek za znanosti o okolju: Skupina za radiokemijo, Skupina za biogeokemijo, Laboratorij za analizno kemijo okolja

2 STANDARD

SIST EN ISO/IEC 17025:2005

3 OBSEG AKREDITACIJE / Scope of accreditation

V okviru te akreditacijske listine Slovenska akreditacija priznava akreditiranemu organu usposobljenost za opravljanje naslednjih dejavnosti: I SA hereby acknowledges the accredited body as being competent for performing the following activitites:

3.1 Skrajšan opis obsega akreditacije / A short description of the scope

Področja preskušanja glede na vrsto preskušanja / Testing fields with reference to the type of test: • kemija / chemistry

• radiokemija, sevanje / radiochemistry, radiation

OB05-25 # izdaja 5

Methods:

1. Determination of **strontium** by beta counting

) Institut

"Jožef Stefan"

Ljubljana, Slovenija

- 2. Determination of **tritium activity** by liquid scintillation counting
- Determination of ¹⁴C in alkaline solution
 Determining of elemental composition of environmental samples using k₀-INAA
- 5. Determination of **total mercury** in water samples
- Water quality Application of inductivity coupled plasma mass spectrometry (ICP-MS) Part 2: Determination of 62 elements
 Water quality – Determination of organotin compounds – Gas chromatographic method ICP-MS detection

Stran 1 od 6

Accreditation Certificate LP-090

Since 2012

Reg. št. / *Ref. No.*: 3150-0214/10-0014 Datum izdaje / *Issued on*: 21. marec 2018 Zamenjuje izdajo z dne / *Replaces Annex dated*: 7. februar 2017 Vejismodo skreditecje je mogoće preveni na spletni stran 54. vevs slo-skreditecja šl. *Information on current accredition status is avanibae the 165* A vebale. vvvi So-skreditecja šl.

> PRILOGA K AKREDITACIJSKI LISTINI Annex to the accreditation certificate

> > LP-090

1 AKREDITIRANI ORGAN / Accredited body

Institut "Jožef Stefan" Jamova cesta 39, 1000 Ljubljana Odsek za znanosti o okolju - na spletnem mestu. / Copy of attachment for web publishing.

2 STANDARD

SIST EN ISO/IEC 17025:2005

3 OBSEG AKREDITACIJE / Scope of accreditation

V okviru te akreditacijske listine Slovenska akreditacija priznava akreditiranemu organu usposobljenost za opravljanje naslednjih dejavnosti: / SA hereby acknowledges the accredited body as belng competent for performing the following activities:

3.1 Skrajšan opis obsega akreditacije / A short description of the scope

Področja preskušanja glede na vrsto preskušanja / Testing fields with reference to the type of test:

 kemija, radiokemija, sevanje / chemistry, radiochemistry, radiation
 Področja preskušanja glede na vrsto preskušanca / Testing fields with reference to the type of test item:

• okolje in vzorci iz okolja / environment and samples from the environment

• živila / foodstuffs

• kmetijski proizvodi (krma) / agricultural products (fodders)

OB05-25 # Izdaja 6

Methods:

- 1. Determination of **strontium** by beta counting
- Determination of tritium activity by liquid scintillation counting
- Determination of ¹⁴C in alkaline solution
 Determining of elemental composition of environmental samples using k₀-INAA

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

Stran 1 od 8

Institut

"Jožef Stefan"

Ljubljana, Slovenija

Accreditation Certificate LP-090 Scope of the LP-090 dated 2018-03-21: • Chemistry

 Determination of 31 elements (Ag, As, Au, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Nd, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, Zn and Zr) in soil, sediments, ores, sewage sludge, <u>biological samples, foodstuffs</u> and fuels by k₀-INAA

Radiochemistry

- Determination of strontium in samples from the environment (soil, sediment, water, aerosol filter), foodstuffs, milk, feedstuffs and residue by beta counting
- Determination of tritium activity by liquid scintillation counting (water, urine)
- Determination of ¹⁴C in alkaline solution (water, urine) Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

Institut

"Jožef Stefan" Ljubljana, Slovenija

Accreditation Certificate LP-090 2018-03-21 for k₀-INAA

Mesta Podro Podro Testin	očja preskušanja glede na vrsto	In the laboratory preskušanja: kemija / Testing fields with preskušanca: okolje in vzorci iz okolja; pe of lest item: environment and personal	reference to the type of test: chemistry žIvlla; kmetijski proizvodi (krma); biološki	l vzorel /	ve			Negotovost r		Materiali;
2. Q	Oznaka standarda ali nestandardne preskusne metode Reference to slandard or non- standard festing method	Naslov standarda ali i preskusne metode in mor na druge standarde Tikle of standard or non- method and eventual re standards or mor atenderds or mor	Območje preskušanja; Negotovost razulata preskušanja (kjer je to pomembno) Range of testina; Uncertainty of the result of testing (where relevant)	Materiali; proizvodi Materials; products	ng	Range of tes	ting; Uncer	to pomembr tainty of the	11 (2) *** (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	proizvodi Materials;
			$\begin{array}{c} OdfFrom DarTo \\ \hline magka mg/ka u. (%) u. (%) \\ \hline magka product u. (%) u. (%) \\ \hline s \\ s \\$	ores, sewage sludge		, te:	sting (where	e relevant)		products
			Ca 300 1E+04 3,5 20 > 1E+04 4E+05 3,5 5,0			Od/From	Do/To	Od/From	Do/To	ores,
			Co 0.02 10.0 3.5 20 > 10.0 1E+03 3.5 4.0 Cr 0.5 20.0 3.5 20 > 20.0 1E+03 3.5 4.0		-	<u>mg/kg</u>	mg/kg	u _c (%)	<u>u_c (%)</u>	sewage
			Cs 0.03 5.0 3.5 20 > 5.0 1E+03 3.5 4.0 Eu 0.01 2.0 3.5 20 > 2.0 1E+02 3.5 4.0		Ag	g 0,1	5,0	3,5	20	sludge
)pi	ija priloge za objavo	o na spletnem mestu. / Co	Fe 20 1E+03 3.5 20 > 1E+03 7E+05 3.5 4.0 Hf 0.03 5.0 3.5 20 > 5.0 1E+03 3.5 4.0	ublishing.		> 5,0	1E+04	3,5	4,0	
			$\begin{array}{c ccccc} Hg & 0.15 & 10.0 & 3.5 & 20 \\ &> 10.0 & 1.5 \pm +0.3 & 3.5 & 4.0 \\ K & 10.0 & 5 \pm +0.3 & 3.5 & 20 \\ &> 5 \pm +0.3 & 1 \pm +0.5 & 3.5 & 4.0 \\ La & 0.02 & 5.0 & 3.5 & 20 \end{array}$		A	s 0,03	5,0	3,5	10	
			> 5,0 1E+03 3,5 4,0 Mo 0,5 10,0 5,0 30 > 10,0 3,3E+05 4,0 5,0			> 5,0	5E+05	3,5	4,0	
			Na 1,0 1E+03 3,5 10 >1E+03 1E+05 3,5 4,0 Nd 0,5 10,0 4,0 20 >10,0 1E+03 4,0 5,0		A	0,0004	0,050	3,5	20	
			Rb 0.6 20,0 3.5 20 > 20,0 1E+03 3.5 4,0 Sb 0,01 5,0 3,5 10 > 5.0 5E+03 3,5 4,0			> 0,050	1E+04	3,5	4,0	
			Sc 0,005 5,0 3,5 20 > 5,0 1E+03 3,5 4,0 Se 0,5 10,0 3,5 20 > 10,0 1E+03 3,5 4,0		Br	0,1	5,0	3,5	20	
			Sm 0,005 5.0 3.5 20 > 5,0 1E+03 3.5 4.0 Sr 30 1E+02 5.0 20 > 1E+02 1.5E+03 4.0 10			> 5,0	1E+04	3,5	4,0	
			Ta 0.01 1.0 3.5 20 > 1.0 1E+03 3.5 4.0 Tb 0.01 1.0 3.5 20 > 1.0 1E+03 3.5 4.0		C	a 300	1E+04	3,5	20	
			Th 0,02 10,0 3,5 20 > 10,0 1E+03 3,5 4,0 U 0,02 10,0 3,5 20 > 10,0 1E+03 3,5 4,0			> 1E+04	4E+05	3,5	5,0	
			Yb 0,01 5,0 3,5 20			<u>∽ ∩ つ</u>	10.0	25	20	

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

Institut

"Jožef Stefan"

Accreditation Certificate LP-090 2018-03-21 for k₀-INAA

odročja preskušanja glede na vrst	e: In the laboratory preskušanja: kemija / Testing fields with preskušanca: okolje in vzorci iz okolja; pre of test item: environment and sampl	preference to the type of test: chemistry Živlia; kmetijski proizvodi (krma); biološki es from the environment; foodstuffs; agrid	l vzorci / cultural	Ob	močje presl	kušanja	Relativna kombiniran	а	biološki vzorci, brana
Ozneki, standarda el t. nestandardin presture metodo <i>Refetetodo i sandard o non</i> standard testing metrod	Nations standardte är inskonderde predvoge medialen moreizhen ner unværer ne dvige tandardte all metode Tille of standardte i metode metod and everlaat nåelben to other allenderde or method	Obmodele preskularija. Negotivnosti inzuñala preskularija (feje je bajomenhono) Range of releniz, former alvani (fremesul af lasting) (mice alvani (fremesul af lasting) (fremesul af lasting) (fremesul lasting) (fremesul last	Naterial: protocodi amerinis; products:	Ra	nge of testii	ng	standardna negotovost <i>Relative co</i> <i>standard</i> <i>uncertainty</i>	: (u _c), % ombined	hrana, gori∨a, Biological samples, foodstuffs, fuels
spija priloge za objav	2 za objavo na spletnem ostu. / CC vy materima standardina (k), % biodoli vy materima standardina (k), % 2 za objavo na spletnem ostu. / CC vy materima standardina (k), % biodoli vy materima (k), % 0 0 4 100 v materima (k), 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Ag As Au Br	> 2,0 5 0,02 > 5,0 1 0,001 > 0,050 0,05 > 2,0	Do/To mg/kg 2,0 2E+03 5,0 4E+03 0,050 1E+02 2,0 3E+03 5E+03	Od/From u _c (%) 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 4,0	Do/To <u>u_c (%)</u> 20 4,0 20 4,0 20 4,0 20 4,0 20 4,0 20 4,0 20	iblishing	

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

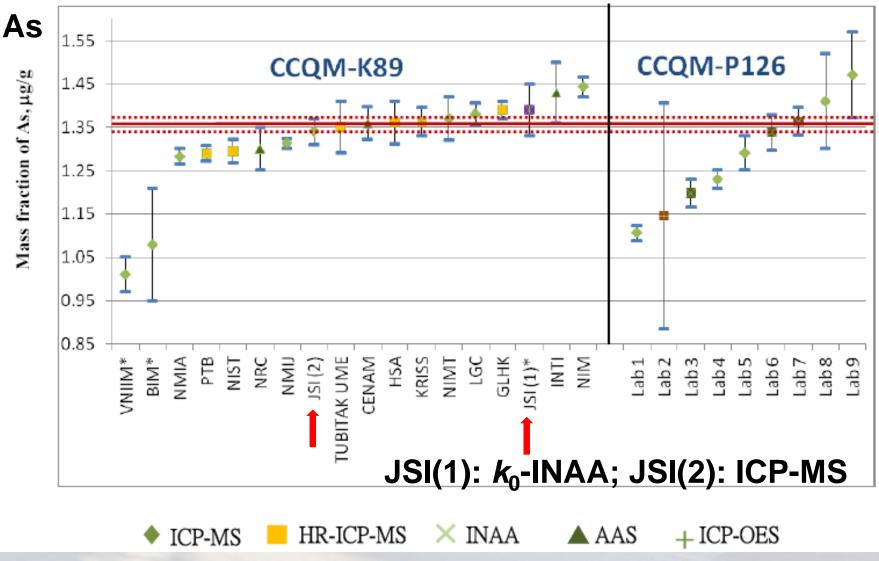
Institut

"Jožef Stefan"

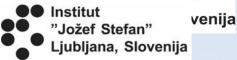
Participation in Inter-comparison studies at the highest level (until 2013)

Organizer	Material	Year	Analytes			
	IMEP-14 Sediment	2000	Major and trace elements			
IRMM	CCQM-K44 Sewage Sludge		Major and trace elements			
	IMEP-29 Feed of plant origin	2009	Total As, Cd, Pb, Hg and Sn; Extractable Cd and Pb			
	IMEP-112		Total and inorganic arsenic in wheat, vegetable food and algae			
	IMEP-38	2013	Determination of total As, Cd, Pb and Hg in compound feed			
1 A K	CCQM-P34 Aluminum	2002	Fe, Cu, Mn, Cr and Zn			
BAM	CCQM-P 34.1 Aluminum	2003	Fe, Cu <mark>, M</mark> n, Cr and Zn			
March -	Yttrium Stabilized Zirconium Oxide	2013	Th, U and Hf			
	CCQM-P104 Phosphogypsum	2008	As, Cd, Cr and Cu			
IAEA	Determination of Trace Elements in IAEA-452 Biota Sample	2008	Trace elements and methylmercury			
INCT	INCT-OBTL-5 Oriental Basma Tobacco Leaves	2008	Inorganic trace elements			
	INCT-PVTL-6 Polish Virginia Tobacco Leaves	2008	Inorganic trace elements			
	ISPRA RM021 Lagon Sediment	2010	As, Cd, Ni, Pb, Cu, Co and Mn			
ISPRA	ISPRA RM039 Lake Sediment	2013	As, Cd, Ni, Pb, Cu, and Co			
NIM,	CCQM-P128 & APMP.QM-P17	2011	Pb, As measurements in cosmetic (cream)			
China	CCQM-K106 & P128.1	2013	Pb, As and Hg measurements in cosmetic (cream)			
GLHK	CCQM-K89 & P126	2011	Trace and essential elements in Herba Ecliptae			
	APMP.QM-S5	2011	Essential and toxic elements in Seafood			
CMQ,	CCQM-K30.1	0010	Pb in Wine			
Chile	& CCQM-P12.2	2012	& Pb, Fe, Cu and Cd in Wine			
NMIJ	and the second se		Determination of arsenic species, total As and Cd in brown rice flour			

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey


Institut

"Jožef Stefan"


jubljana, Slovenija

CCQM-K89: Herba Ecliptae

CCQM-K127 and CCQM-P162: Contaminant and other elements in soil: Final Report

M. Rocio Arvizu Torres¹, J. Velina Lara Manzano¹, Milena Horvat², Radojko Jaćimović², Tea Zuliani², Polona Vreča²

¹ Centro Nacional de Metrología (CENAM) – Mexico
 ² Jožef Stefan Institute (JSI) - Slovenia

CCQM IAWG Meeting BIPM, Sèvres, France 24 – 25 April 2017

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

28

CCQM-K127: Non-contaminated soil

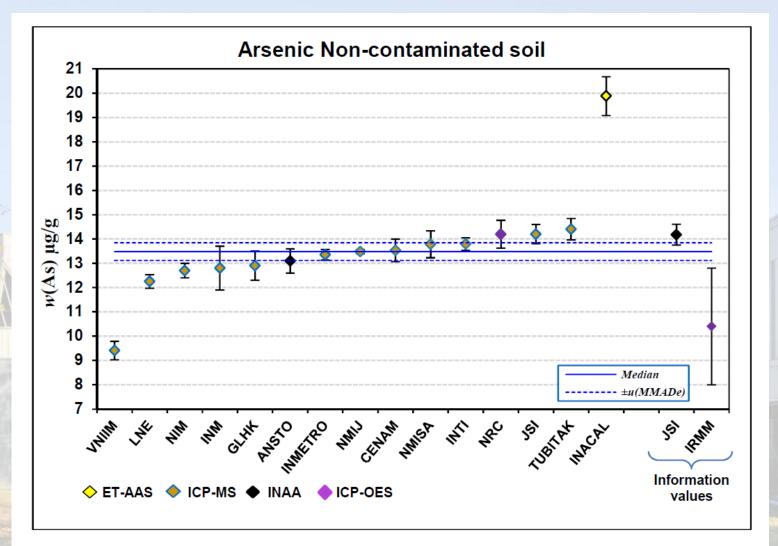


Figure 1. Arsenic in non-contaminated soil and standard uncertainties. IRMM result was requested to remove.

CCQM-K127: Contaminated soil

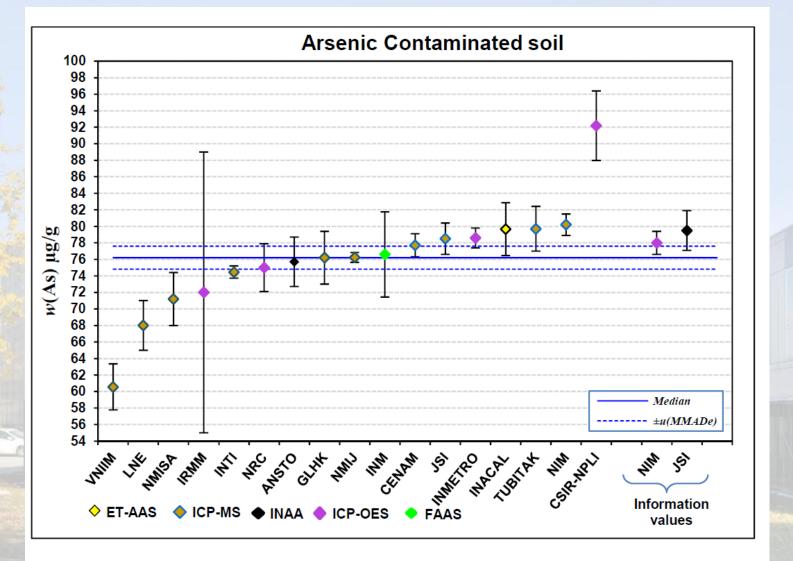
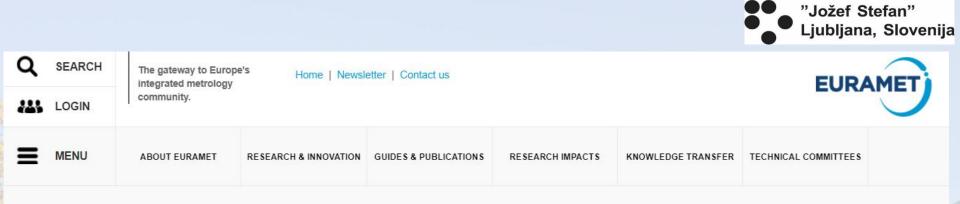



Figure 2. Arsenic in contaminated soil and standard uncertainties.

Jožef Stefan" **Calibration and Measurement** Ljubljana, Slovenija Capabilities (CMCs) of MIRS/IJS/F-2,O-2 The BIPM key comparison database (2015): – Amount of substance: Category 10 - Biological materials and fluids: 5 CMCs (As, Ca, Zn, Cd, Pb) Category 11 - Food: 4 CMCs (As, Zn, Fe, Total As) Category 14 - other materials: 2 CMCs (As, Hg) Note: k_0 -INAA was used; Category 10 – revised in year 2016

Workshop, ENVCRM, 16 May 2108, TUBITAK UME, Gebze, Turkey

Institut

Research & Innovation / Search Research Projects

Matrix reference materials for environmental analysis

Short Name: ENVCRM, Project Number: 14RPT03

PARTICIPATING EURAMET NMIS AND DIS BAM (Germany) DMDM (Serbia) GUM (Poland) IMBiH (Bosnia and Herzegovina) MIKES-SYKE (Finland) MIRS/IJS/F-2,O-2 (Slovenia) UME (Turkey) OTHER PARTICIPANTS

National Technical University of Athens -NTUA (Greece) Uniwersytet Warszawski (Poland)

INFORMATION

Institut

TYPE EMPIR

> FIELD Research Potential

PROJECT TYPE Joint Research Project

STATUS in progress

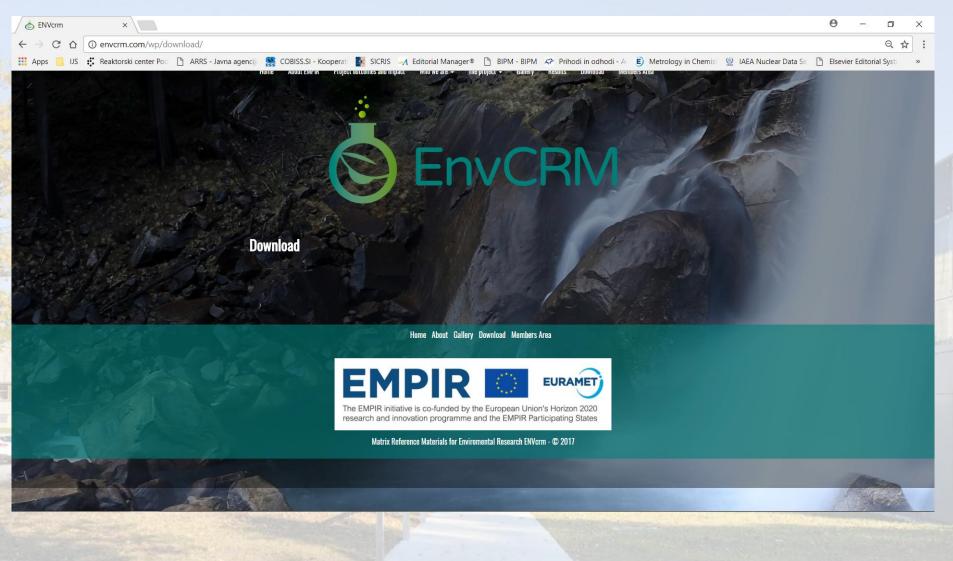
CALL 2014

DURATION 2015 - 2018

Project Partners

The EMPIR initiative is co-funded by the European Union's Horizon 2020 esearch and innovation programme and the EMPIR Participating States

Workshop, ENVCRM, 16 May 2108, TÜBITAK UME, Gebze, Turkey


Institut

"Jožef Stefan"

Ljubljana, Slovenija

EnvCRM

CRM Candidates

- Organic ground water CRM candidate
 - PFOS (perfluorooctane sulfonate)
 - PFOA (perfluorooctanoic acid)

Inorganic water CRM Candidate
 – Pb, Cd, Ni, As, Se

Inorganic soil CRM Candidate – As, Cr, Cd, Hg, Pb, Ni, Fe, Co, Mn, Cu, Zn, V, Sb

IJS Participation

Elements in River Water EnvCRM 02

- Homogeneity study
- Stability study (+18 and +60 °C):
 - Short-term
 - Long-term
- Characterization of Pb, Cd, Ni, As, Se by ICP-MS
- The characterisation was also done under EURAMET.QM-S11 / EURAMET 1424 organized by TUBITAK UME and IMBIH

Elements in soil EnvCRM 03

- Homogeneity study
- Stability study:
 - Short-term
 - Long-term
- Characterization of As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V, Zn by ICP-MS, CV AAS and k₀-INAA

Note: Additionally data for As, Co, Cr, Mn, Sb, V and Zn obtained by

ICP-MS were reported.

Acknowledgments

- Prof. F. De Corte, Belgium
- Dr. A. Simonits, Hungary
- Robbert van Sluijs, The Netherlands
- k_0 -ISC and k_0 -NDSC
- CCQM/IAWG (Dr. Mike Sargent)
- CENAM (M. Rocio Arvizu Torres), Mexico
- ARRS, MIRS
- EMPIR, EVNCRM Project No. 14RPT03 (co-ordinator TUBITAK UME)
- Colleagues at the Department of Environmental Sciences of the Jožef Stefan Institute, Slovenia

Workshop, ENVCRM, 16 May 2108, TÜBITAK UME, Gebze, Turkey

Institut

Jožef Stefan"

Ljubljana, Slovenija