

Certification Report

Page 1 / 29

25-Hydroxy Vitamin D₂ and 25-Hydroxy Vitamin D₃ in Lyophilized Serum UME CRM 1308

Prepared by

Gökhan BİLSEL Dr. Ahmet Ceyhan GÖREN Dr. Bilgin VATANSEVER

Dr. Kevser TOPAL Dr. Alper İŞLEYEN Seda Damla HATİPOĞLU

Date 31/08/2016

Dr. Mustafa ÇETİNTAŞ Director

UME CRM 1308

NATIONAL METROLOGY INSTITUTE

TABLE OF CONTENTS

TABLE OF CONTENTS	2
SYMBOLS AND ABBREVIATIONS	3
ABSTRACT	4
INTRODUCTION	5
PARTICIPANTS	6
MATERIAL PROCESSING	7
HOMOGENEITY	7
STABILITY	11
Short Term Stability Results	11
Long Term Stability Results	17
CHARACTERIZATION	20
ADDITIONAL MEASUREMENTS	21
VALUE ASSIGNMENT AND UNCERTAINTY CALCULATIONS	22
TRACEABILITY	23
COMMUTABILITY	23
INSTRUCTIONS FOR USE	23
Intended Use	23
Scope of Application	23
Safety Precautions	23
Storage Conditions	23
Reconstitution of the Material	24
Minimum Sample Intake	24
Use of the Certified Value	25
ACKNOWLEDGMENT	25
REFERENCES	25
REVISION HISTORY	26
ANNEX 1: Details of ID-LCMS Technique	26
ANNEX 2: Details of ID- LCMS/MS Technique	27
ANNEX 3: Details of HPLC-UV Technique	28
ANNEX 4: Reported Results for the Interlaboratory Study	29

NATIONAL METROLOGY INSTITUTE

SYMBOLS AND ABBREVIATIONS

$\Delta_{\rm m}$	Absolute difference between mean measured value and the certified value
ANOVA	Analysis of variance
APCI	Atmospheric Pressure Chemical Ionization
CRM	Certified Reference Material
HPLC	High Performance Liquid Chromatography
ID-LCMS/MS	Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry
ID-LCMS	Isotope Dilution Liquid Chromatography Mass Spectrometry
IS	Internal Standard
ISO	International Standards Organisation
k	Coverage factor
MS _{between}	Mean of squares between-unit from an ANOVA
MS _{within}	Mean of squares within-unit from an ANOVA
NIST	National Institute for Standards and Technology
NIST SRM	Standard Reference Material produced by NIST
RSD _{stab}	Relative standard deviation of stability data
S	Standard deviation
S _{bb}	Between-unit standard deviation
SI	International System of Units
SRM	Standard Reference Material
SS	Sum of Squares
u_{Δ}	Combined measurement uncertainty for the difference between measurement result and certified value
$U_{arDelta}$	Expanded measurement uncertainty for the difference between measurement result and certified value.
$u_{ m bb}$	Standard uncertainty related to a possible between-unit inhomogeneity
u^*_{bb}	Standard uncertainty related to a maximum between-unit inhomogeneity that could be hidden by method repeatability
Uchar	Standard uncertainty of the material characterisation
<i>U_{CRM}</i>	Combined standard uncertainty of CRM
u_{sts}	Standard uncertainty for short term stability study
u_{lts}	Standard uncertainty for long term stability study
u_{meas}	Measurement uncertainty
U_{CRM}	Expanded uncertainty of CRM
${\cal V}_{MS_{within}}$	MS _{within} degrees of freedom
X_i	Time for each repeated analysis
\overline{X}	Average of all time periods
x	Selected shelf life

NATIONAL METROLOGY INSTITUTE

ABSTRACT

The Certified Reference Material (CRM) is utilized in chemical measurements, as a useful tool for proving traceability of measurement result and enhances measurement quality. Vitamin D concentrations are frequently measured for treatment and diagnosis purposes. Vitamin D deficiency/excess is evaluated according to the concentration of 25-hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 metabolites.

Number of available CRMs to be used in these measurements is very limited. The purpose of this project is production and certification of UME CRM 1308 "25-hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 concentrations in lyophilized serum". SI traceability of the related method will be proved by utilization of this CRM in the measurements.

This report includes details for the certification of UME CRM 1308 in accordance with the requirements of ISO Guide 34:2009^[1]. The production facilities, chemical analyses, results of homogeneity assessment, stability and characterization studies, statistical evaluation of data and conclusions have been presented and the corresponding uncertainties (Table 1) have been calculated in accordance with the ISO Guide 98-3, Uncertainty Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement-GUM^[2].

Table 1. Certified values and uncertainties for UME CRM 1308

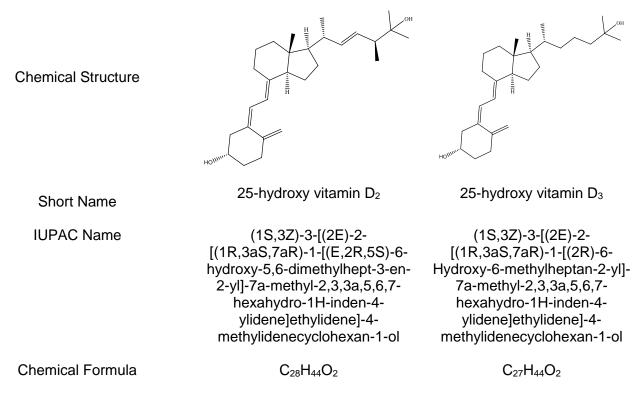
Measurand	Mass Fraction ^[1] [ng/g]	U _{скм} ^[2] [ng/g]	Concentration ^[3] [ng/mL]	U _{СRM} ^[2,3] [ng/mL]
25-hydroxy vitamin D ₂ concentration in lyophilized serum	49.97	2.86	51.00	2.92
25-hydroxy vitamin D₃ concentration in lyophilized serum	48.76	2.59	49.76	2.65

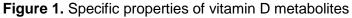
[1] Certified values are the mean of 6 measurement results obtained from two units of the CRM on two different day by ID-LCMS technique. Measurement results and the uncertainties are traceable to International System of Units (SI).

[2] The accompanying uncertainties include the influence of homogeneity, stability and characterization studies. The uncertainty of the certified value is stated as standard uncertainty of the measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with GUM "Guide to the Expression of Uncertainty in Measurement".

[3] Certified values and the uncertainties are calculated from the mass fractions (ng/g) using density of the material (1.0206 g/mL) measured at 22 °C.

NATIONAL METROLOGY INSTITUTE




INTRODUCTION

The active form of vitamin D helps controlling the calcium level in the body. Calcium is consumed in bone and tooth production together with phosphate ions. Vitamin D can be taken from food (e.g. milk and fish) or synthesized by the effect of sunlight in the body. Both the deficiency (e.g.osteoclasis) and excess (e.g. kidney stone formation) causes several diseases at all ages ^[3,4]. Additionally, adequate intake of vitamin D was reported as it may prevent several cancer types ^[5-8]. Measurement of vitamin D metabolite levels in serum is frequently used as a diagnostic tool in clinical chemistry, where measurement quality is of prime importance.

25-hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 concentrations in lyophilized horse serum was certified in UME CRM 1308. This report presents the details of the production and certification stages including the data, utilized techniques and statistical analysis. UME CRM 1308 was produced to be used as a material in proving the traceability and quality of LC-MS, LC-MS/MS and HPLC-UV measurements.

Systematic description for UME CRM 1308 according to ISO 15194 is "Certified reference material UME CRM 1308 - 25-hydroxy Vitamin D_2 and 25-hydroxy Vitamin D_3 in Lyophilized Horse Serum".

NATIONAL METROLOGY INSTITUTE

PARTICIPANTS

All production and certification stages of UME CRM 1308 have been performed at TÜBİTAK UME, except for material processing, which has been done at İstanbul Pendik Veteriner Kontrol Enstitüsü. Several samples have been sent to competent laboratories (Table 2). Results have been presented in the UME CRM 1308 certification report as an informative value (Annex 4, Table 29).

Table 2. Participating institutes and definition of their work.

Participant	Description of the Work
Acıbadem Labmed Klinik Laboratuvarı Küçük Çamlıca Mah. Ord. Prof. Fahrettin Kerim Gökay Cad. No: 49 Üsküdar İSTANBUL/TÜRKİYE	Participant of Interlaboratory Comparison Study
Düzen Laboratuvarları Tunus Cad. No:95 Kavaklıdere ANKARA/TÜRKİYE	Participant of Interlaboratory Comparison Study
Ghent University Laboratory of Analytical Chemistry, Faculty Pharmaceutical Sciences, Ghent University Harelbekestraat 72 9000 Ghent/BELGIUM	Participant of Interlaboratory Comparison Study
İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Fikret Biyal Merkez Araştırma Laboratuvarı İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Yerleşkesi Kocamustafapaşa Cad. No: 53 Cerrahpaşa 34098 İSTANBUL/TÜRKİYE	Participant of Interlaboratory Comparison Study
Pendik Veteriner Araştırma Enstitüsü Batı Mah. Erol KAYA Cad. No:1 34890 İSTANBUL/TÜRKİYE	Material Processing
TÜBİTAK UME TÜBİTAK Gebze Yerleşkesi, Dr. Zeki Acar Cad. No.1, 41470 KOCAELİ/TÜRKİYE	Project Management and Certification Studies

NATIONAL METROLOGY INSTITUTE

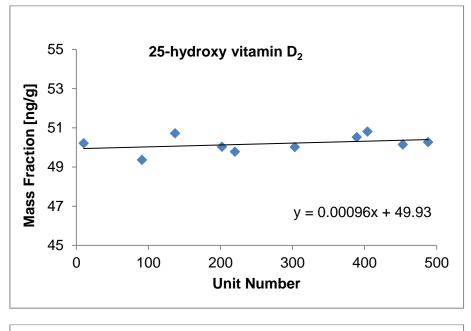
MATERIAL PROCESSING

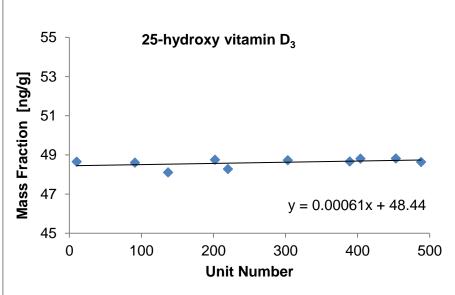
UME CRM 1308 was prepared by adding 25-hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 standards into the horse serum containing 25-hydroxy vitamin D_3 endogenously. Horse serum was purchased from Biochrom AG (Germany) and pure standards were purchased from Sigma-Aldrich (USA).

The prepared solution was bottled into amber glass bottles as approximately 2 mL for each unit. Filling order was recorded by labelling after filling. A total of 500 units were prepared. All bottles were lyophilized at the same time. The bottles were first lyo-capped in the lyophilizer under vacuum and then screw capped after being removed from the lyophilizer.

Units were classified in respect to CRM production stages (homogeneity, stability and characterization) with the random stratified sample selection approach by a software developed at TÜBİTAK UME (TRaNS)^[9]. After classification into subgroups, samples were stored under selected test conditions.

HOMOGENEITY


In order to determine between unit heterogeneity for certification of 25-hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 , 10 units of UME CRM 1308 have been chosen by utilizing TRaNS^[9], since the cubic root of the total number of units is less than 10.


Homogeneity study was done by ID-LCMS/MS technique (Table 3). Measurements were performed under repeatability conditions. Details of the technique were presented in Annex 1. Data has been subjected to regression analysis (Table 4). The slope was tested with t-test in 95 % confidence level. But no statistically significant difference arising from filling or analysis order (Table 5) was detected.

Grubbs' test was applied to detect outliers but none has been identified.

NATIONAL METROLOGY INSTITUTE

UME CRM 1308

Graph 1. Homogeneity study results.

NATIONAL METROLOGY INSTITUTE

Table 3. Results of homogeneity study.

Unit Number	Mass Fraction [ng/g]			
	25-hydroxy vitamin D ₂	25-hydroxy vitamin D₃		
10	50.22	48.66		
137	50.73	48.11		
220	49.79	48.28		
303	50.02	48.74		
404	50.81	48.81		
453	50.15	48.82		
488	50.28	48.64		
91	49.37	48.61		
202	50.04	48.76		
389	50.53	48.67		

Unit Number	Number of I	Replicates	Aver [ng	-	Variance [ng²/g²]	
10	2		50.22		0.01	
137	2		50.	73	0.8	6
220	2		49.	79	0.00	
303	2	2		02	0.2	5
404	2		50.	81	0.0	3
453	2		50.15		0.16	
488	2		50.28		0.01	
91	2		49.37		0.0	0
202	202 2		50.04		0.02	
389 2			50.53		0.17	
ANOVA						
Source of Variation		SS	df	MS	F	F _{crit}
Between Groups		3.39	9	0.38	2.51	3.02
Within Groups		1.50	10	0.15		

NATIONAL	METROLOGY	INSTITUTE
----------	-----------	-----------

Unit Number Of Replicates			Aver [ng		Varia [ng²		
10	2		48.	66	0.36		
137	2		48.11		0.67		
220	2		48.	28	0.01		
303	2		48.	74	0.0	0.01	
404	2		48.	81	0.87		
453	2		48.82		0.02		
488	2		48.64		0.11		
91	2		48.61		0.0)5	
202	202 2		48.76		0.06		
389	389 2		48.67		0.00		
ANOVA							
Source of Variation		SS	df	MS	F	F crit	
Between Groups		0.97	9	0.11	0.50	3.02	
Within Groups		2.17	10	0.22			

As $MS_{between} < MS_{within}$, the random variation between units (*s*_{bb}) cannot be estimated. The maximum hidden between bottle heterogeneity (u_{bb}) was then evaluated as follows ^[10]:

$$u_{bb}^* = \sqrt{\frac{MS_{within}}{n}} \sqrt[4]{\frac{2}{v_{MS_{within}}}}$$

In this study, u_{bb}^* , is 0.52 ng/g and 0.47 ng/g for 25-hydroxy vitamin D₂ and 25-hydroxy vitamin D₃, respectively.

ANOVA results confirm the absence of statistical significance (for 25-hydroxy vitamin D₂ $F = 2.51 < F_{crit} = 3.02$ and for 25-hydroxy vitamin D₃ $F = 0.50 < F_{crit} = 3.02$).

NATIONAL METROLOGY INSTITUTE

STABILITY

Two different stability tests, for UME CRM 1308, have been conducted. Short term stability test has been performed to simulate transportation conditions and long term stability test to simulate long term storage conditions.

Short Term Stability Results

Short term stability study was performed with 52 units of CRM (where 26 units were replacements) and long term study was conducted by 36 units of CRM (where 18 units were replacements). Samples were selected by TRaNS software.

Short term test temperatures were set as -20 °C, 4 °C, 25 °C and time periods were set as 1, 2, 3, 4 weeks. 4 units per week were placed on the different storage cabinets at different temperatures. In order to set the reference point, 4 units were selected and placed directly to the reference temperature (-80 ± 3 °C). Each week, four units of CRM were transferred to reference temperature. At the end of four weeks, all of the units were analysed together under repeatability conditions. Analyses were performed with ID-LCMS/MS for which the details are presented in Annex 2. Unit numbers for the samples used in this study and corresponding time periods are presented in Table 6 for both of the analytes. Results (Table 7) were evaluated individually for each storage temperature (Table 8 and Table 10). The results were screened for outliers using the Grubbs' test. No outliers detected.

Furthermore, to inspect changes in concentration with temperature, the data was evaluated for each storage temperature separately. When slope of the regression lines were tested for statistical significance, it was observed that the slopes of the regression lines were not significantly different from zero (at 95 % confidence level) at all temperature values selected (Table 9 and Graph 2 for 25-hydroxy vitamin D_2 and Table 11 and Graph 3 for 25-hydroxy vitamin D_3).

NATIONAL METROLOGY INSTITUTE

Table 6. Isochronous setup for short term stability study.

Unit Number	Temperature [°C]	Time [Week]
402	-80	0
464	-80	0
492	-20	1
6	-20	1
15	-20	2
288	-20	2
301	-20	3
25	-20	3
31	-20	4
305	-20	4
46	4	1
322	4	1
61	4	2
327	4	2
335	4	3
69	4	3
75	4	4
352	4	4
90	25	1
361	25	1
370	25	2
103	25	2
383	25	3
104	25	3
388	25	4
116	25	4

NATIONAL METROLOGY INSTITUTE

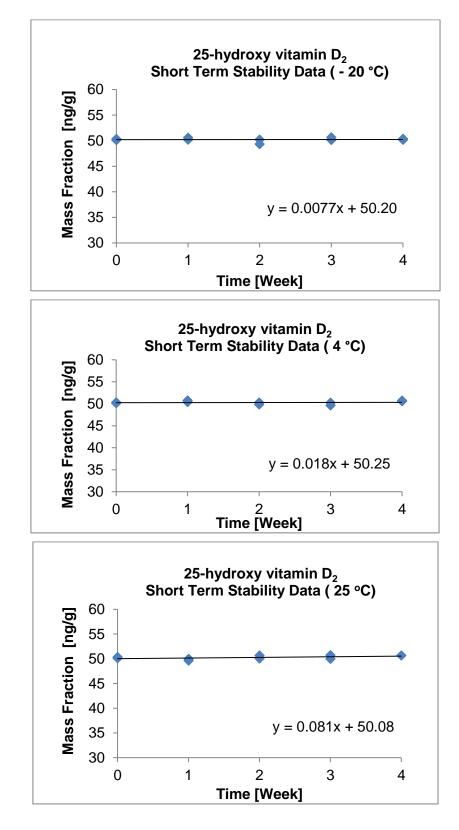


Table 7. Short term stability study results.

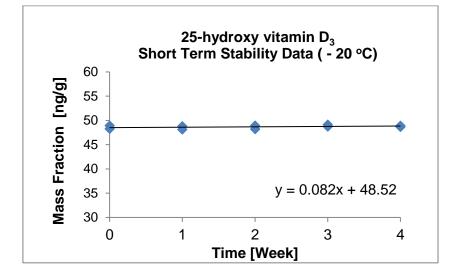
		Mass Fraction [ng/g]					
Time [week]	25-hydroxy vitamin D ₂			25-hydroxy vitamin D ₃			
	-20 °C	4 °C	25 °C	-20 °C	4 °C	25 °C	
0	50.33	50.33	50.33	48.95	48.95	48.95	
0	50.14	50.14	50.14	48.28	48.28	48.28	
1	50.59	50.76	50.01	48.82	49.01	49.03	
1	50.23	50.39	50.19	48.14	48.24	48.49	
2	50.23	50.29	49.65	48.95	49.03	48.43	
2	49.33	49.83	50.07	48.23	49.21	48.75	
3	50.17	49.61	50.66	49.14	48.37	48.26	
3	50.66	50.24	50.75	48.75	48.21	48.80	
4	50.17	50.71	50.00	48.66	48.69	47.82	
4	50.37	50.59	50.67	48.92	48.34	48.78	

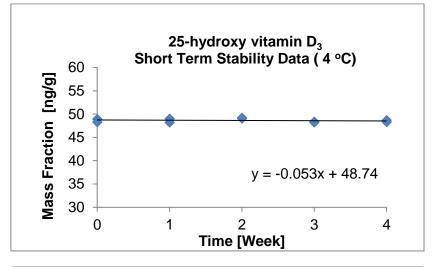
NATIONAL METROLOGY INSTITUTE

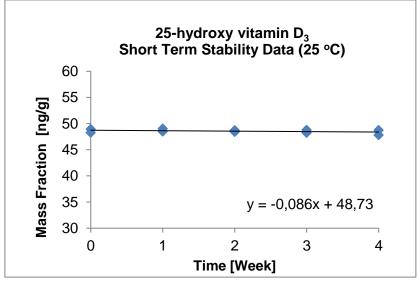
Graph 2. Regression lines prepared with short term stability data for 25-hydroxy vitamin D_2 at different temperatures.

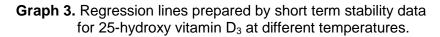
NATIONAL METROLOGY INSTITUTE

 Table 8. ANOVA analysis with short term stability data for 25-hydroxy vitamin D₂ at different temperatures.


Storage Temperature [°C]			Average [ng/g]	9	-	′ariance ːng²/g²]	
-80	2		50.23	50.23		0.02	
-20	8		50.22			0.16	
4	8		50.30	50.30		0.17	
25	8		50.25	50.25		0.16	
		ANOVA					
Source of Variation	SS	df	MS		F	F _{crit}	
Between Groups	0.03	3	0.01		0.064	3.05	
Within Groups	3.46	22	0.16				


Table 9. Statistical evaluation of short term stability study results for 25-hydroxy vitamin D₂.


Statistical Parameters	-20 °C	4 °C	25 °C
Slope	0.0078	0.018	0.081
Slope / s _b	0.086	0.086	0.079
Significance (at 95 % confidence level)	-	-	-
u _{sts} [ng/g]	0.0017	0.0017	0.0017


NATIONAL METROLOGY INSTITUTE

UME CRM 1308

NATIONAL METROLOGY INSTITUTE

Table 10. ANOVA with short term stability data for 25-hydroxy vitamin D ₃ at different temperatures.							
Storage Temperature [°C]	Number of Replicates		Average [ng/g]		Variance [ng²/g²]		
-80	2		48.61		0.22		
-20	8		48.7	0	0.12		
4	8		48.64		0.16		
25	8	48.54		0.15			
	ANOVA						
Source of Variation		SS	df	MS	F	F _{crit}	
Between Groups		0.10	3	0.03	0.23	3.05	
Within Groups		3.23	22	0.15			

Table 10. ANOVA with short term stability data for 25-hydroxy vitamin D_3 at different temperatures.

Statistical Parameters	-20 °C	4 °C	25 °C
Slope	0.082	-0.053	-0.086
Slope / S _b	0.078	0.090	0.083
Significance (at 95 % confidence level)	-	-	-
u _{sts} [ng/g]	0.0017	0.0019	0.0026

UME CRM 1308 can be transferred to the end user under dark conditions without additional cooling elements if temperature does not exceed 25 °C and transportation time does not exceed 4 weeks.

Long Term Stability Results

Long term stability study was conducted by 36 units (18 units were replacements) of UME CRM 1308 selected by TRaNS software. In respect to isochronous setup, selected samples were placed to (-20 ± 4) °C which was the testing temperature for long term stability study. At the end of each time period (every month) 4 units were transferred to reference temperature (-80 ± 3 °C), and all of the units were analysed under repeatability conditions at the end of 8 months. Measurements were done in an order, different from filling order to address the exact source of variation. Analyses were performed with ID-LCMS/MS for which the details were presented in Annex 2. Two replicates were analysed per unit and the results are presented in Table 12.

Data was subjected to statistical analysis (Table 13). Grubbs' test was applied to detect outliers but none has been identified.

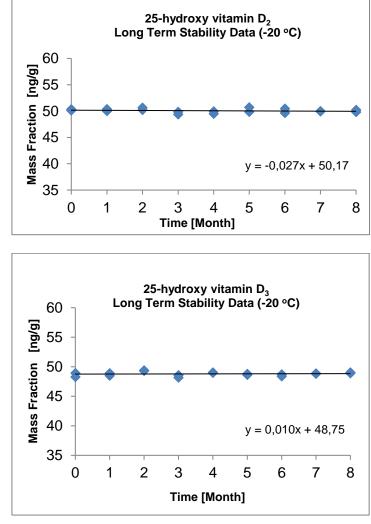

NATIONAL METROLOGY INSTITUTE

Table 12.	Data of	long term	stability	study
-----------	---------	-----------	-----------	-------

Unit	Time	Mass Fraction [ng/g]			
Number	[month]	25-hydroxy vitamin D ₂	25-hydroxy vitamin D₃		
283	0	50.33	48.95		
53	0	50.14	48.28		
380	1	50.00	48.49		
20	1	50.37	48.92		
468	2	50.23	49.40		
336	2	50.65	49.31		
68	3	49.39	48.17		
434	3	49.87	48.59		
119	4	49.51	48.98		
204	4	49.96	49.05		
258	5	49.86	48.64		
310	5	50.70	48.79		
225	6	49.66	48.72		
156	6	50.47	48.38		
351	7	49.94	48.83		
139	7	49.99	48.89		
474	8	49.83	48.92		
56	8	50.22	49.03		

UME CRM 1308

NATIONAL METROLOGY INSTITUTE

Graph 4. Regression lines prepared with long term stability data

Table 13. Statistical evaluation of long-term stability measurement results

Statistical Parameters	Value			
Statistical Farameters	25-hydroxy vitamin D ₂	25-hydroxy vitamin D ₃		
Slope	-0.027	0.010		
Slope / Sb	0.033	0.035		
Significance (at 95 % confidence level)	-	-		
ults [3 years] [ng/g]	1.19	1.08		

NATIONAL METROLOGY INSTITUTE

Slope of the time vs. concentration graph is not significantly different than zero (Graph 4). It is concluded that the change in slope is not statistically significant at 95% confidence level (Table 13).

The extrapolated uncertainty for 3 years was calculated with the equation below ^[12].

$$u_{lts} = \frac{RSD_{stab}}{\sqrt{\sum (X_i - \overline{X})^2}} . x$$

Results indicate that the temperature at -20 ± 4 °C is suitable for the long term storage of UME CRM 1308. Post certification monitoring studies are going to be carried out with UME CRM 1308 in order to verify the validity of the certified value over longer time.

CHARACTERIZATION

Characterization studies for UME CRM 1308 were performed with ID-LCMS which is a primary method producing SI traceable results.

2 units of the candidate CRM was measured with ID-LCMS technique. Isotope labelled 25-hydroxy vitamin D_2 - d_3 and 25-hydroxy vitamin D_3 - d_3 (Medical Isotope Laboratories, Inc., USA) were used as internal standard for ID-LCMS method. The lyophilized sample was dissolved in 2 mL of deionized water. Details about the instrument and the method used are presented in Annex 1. Three replicate measurements were performed from each unit on two different days. Results are presented in Table 14.

Unit Number	Mass Fraction [ng/g]			
	25-hydroxy vitamin D ₂	25-hydroxy vitamin D₃		
100-1	49.66	49.27		
100-2	50.18	48.49		
100-3	49.93	48.51		
70-1	50.13	48.74		
70-2	49.47	49.21		
70-3	50.44	48.36		
Mean	49.97	48.76		

Table 14. Measurement results obtained with ID-LCMS in the characterisation study

NATIONAL METROLOGY INSTITUTE

ADDITIONAL MEASUREMENTS

Additional measurements were also carried out with ID-LCMS/MS and HPLC-UV methods, however these results were not used for value assignment.

With both techniques, 10 units were analysed. Isotope labelled 25-hydroxy vitamin D_3 -d₆ (Medical Isotope Laboratories, Inc., USA) and dodecanophenone (Sigma-Aldrich, USA) were used as internal standard for ID-LCMS/MS and HPLC-UV, respectively. The lyophilized sample was dissolved with 2 mL of deionized water. Details of instruments and the method used are presented in Annex 2 and Annex 3. With both techniques two replicate measurements were done from each sample unit. Results are presented in Table 15 and Table 16.

Unit Number	Mass Fraction [ng/g]			
	25-hydroxy vitamin D ₂	25-hydroxy vitamin D₃		
152	49.85	49.34		
202	50.04	48.76		
389	50.86	48.53		
455	50.23	49.04		
41	49.78	49.09		
208	48.95	48.81		
282	50.02	48.56		
344	51.09	49.15		
368	50.58	48.87		
499	49.50	48.33		
Mean	50.09	48.85		

Table 15. Measurement results obtained with ID-LCMS/MS

Table 16. Measurement results obtained with HPLC-UV

Unit Number	Mass Fraction [ng/g]		
	25-hydroxy vitamin D ₂	25-hydroxy vitamin D₃	
379	48.73	48.49	
71	48.52	47.76	
142	48.57	49.05	
377	48.50	48.74	
334	48.68	49.22	
19	49.17	48.56	
180	48.64	48.75	
470	48.18	48.58	
130	48.66	48.47	
426	48.23	48.64	
Mean	48.59	48.63	

RM-07-U-10-02/Rev.B/05.12.2014

NATIONAL METROLOGY INSTITUTE

The candidate certified reference material was also analysed with an interlaboratory study among competent laboratories. Either an accredited laboratory or a laboratory using a reference method was selected intentionally in accordance with the ISO Guide 34. Results are presented in Annex 4, Table 29.

Density of the reconstituted material was measured at 22 °C using a calibrated pipette and calibrated balance. The result of the density measurement is 1.0206 g/mL.

VALUE ASSIGNMENT AND UNCERTAINTY CALCULATIONS

The certified value is the mean of the ID-LCMS results, which is a primary method traceable to the SI. Applied method was validated in respect to the quality system set up at TÜBİTAK UME.

The uncertainty for the certified value is the unweighed statistical average of u_{bb} , u_{lts} and u_{char} studies. Since the transfer conditions with the lowest uncertainty were selected, the uncertainty contribution of short term stability was neglected. The U_{CRM} was calculated in respect to the equation below.

$$U_{CRM} = k \cdot \sqrt{u_{char}^2 + u_{bb}^2 + u_{lts}^2}$$

Table 17. The uncertainty components for UME CRM 1308

Measurand	Uncertainty Components [ng/g]			
	u _{bb}	u _{lts}	u _{char}	U _{CRM}
25-hydroxy vitamin D ₂ mass fraction in lyophilized serum	0.52	1.19	0.59	2.86
25-hydroxy vitamin D₃ mass fraction in lyophilized serum	0.47	1.08	0.53	2.59

The certified value and uncertainty for 25-hydroxy vitamin D₂ in UME CRM 1308 is

(49.97 ± 2.86) ng/g (k = 2, norm)

The certified value and uncertainty for 25-hydroxy vitamin D₃ in UME CRM 1308 is

(48.76 ± 2.59) ng/g (k = 2, norm)

Systematic description for UME CRM 1308 is "Certified reference material (Horse serum; UME CRM 1308 - 25-hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 in Lyophilized Serum". 25-hydroxy vitamin D_2 concentration (reconstituted) c = 49.97 ng/g (U = 2.86 ng/g; k = 2), 25-hydroxy vitamin D_3 concentration (reconstituted) c = 48.76 ng/g (U = 2.59 ng/g; k = 2), where U is the expanded uncertainty of the CRM using the coverage factor, k=2.

NATIONAL METROLOGY INSTITUTE

TRACEABILITY

In the measurements conducted at TÜBİTAK UME for UME CRM 1308, NIST SRM 2972 "25-Hydroxyvitamin D_2 and D_3 Calibration Solutions" and NIST SRM 972a Level 3 "Vitamin D Metabolites in Frozen Human Serum" were used.

COMMUTABILITY

The intended use of this reference material is to check method performance and validation of 25hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 measurements in serum with LC-MS, LC-MS/MS and HPLC-UV methods.

Commutability of the material with routine *in vitro* diagnostic immunoassay methods has not been assessed. The user would need to assess the commutability, if UME CRM 1308 is going to be used as calibrant for routine *in vitro* diagnostic immunoassay methods.

INSTRUCTIONS FOR USE

Intended Use

This material is intended to be used for method performance check and validation purposes of 25hydroxy vitamin D_2 and 25-hydroxy vitamin D_3 in serum with LC-MS, LC-MS/MS and HPLC-UV methods.

Scope of Application

UME CRM 1308 is suitable for determination of 25-hydroxy-vitamin D₂ and 25-hydroxy vitamin D₃ concentrations in human serum using LC-MS, LC-MS/MS and HPLC-UV methods.

UME CRM 1308 is not suitable for the calibration of 25-hydroxy-vitamin D_2 and 25-hydroxy vitamin D_3 measurements in human serum using immunoassay methods unless the commutability of the material is proven by the user.

Safety Precautions

Raw material: donor horse serum (origin: Germany) was tested by the manufacturer (Biochrom) for mycoplasma and sterile filtered (0.1 μ m). This substance is not classified as dangerous according to Directive 67/548/EEC. Complete toxicity testing was not performed. The usual laboratory safety measures apply. The material is suitable for *in-vitro* use only. Safety Data Sheet (SDS) should be read before use.

Storage Conditions

The material should be stored at temperatures lower than -20 °C in a dry and dark place. Solutions of UME CRM 1308 should not be exposed to direct sunlight or UV light. User should take necessary precautions against evaporation or sublimation of the sample. TÜBİTAK UME cannot be held

UME CRM 1308

NATIONAL METROLOGY INSTITUTE

responsible for changes that happen during storage of the material at the customer's premises, especially of open samples.

Reconstitution of the Material

All content of the unit should be reconstituted at once according to the recommended protocol presented below:

- UME CRM 1308 and the deionized water should be kept at room temperature at least for one hour in the room of balance before weighing.
- Before opening, the bottle should be tapped gently to table or bench top in order to collect all of the content at the bottom of the bottle.
- Screw cap is opened. The bottle with the inner cap is placed to the balance and tare is
 pressed. Unit is opened at vertical position gently by balancing the inner pressure with outer
 pressure. Care should be taken in order not to lose any sample on cap or elsewhere. 2 mL of
 water is then added gently with a calibrated pipette into the sample. Then the inner cap is
 closed.
- Bottle with its content and inner cap is weighed (*m*).
- The average amount of water added to the analysed units at TÜBİTAK UME was

$$m_{avg} = (1.9787 \pm 0.0200) \text{ g} (k = 2, \text{ norm})$$

If *m* is deviating from m_{avg} , then the corrected value of the analyte concentration can be calculated as:

Corrected analyte concentration = Certified value
$$\times \frac{m_{avg}}{m}$$

The bottle with added water should be gently shaken with its cap and inner cap closed. If material is stacked on to the inner cap, user can gently rotate the bottle upside down several times to dissolve those particles. Solid particles should be inspected by eye and dissolving procedure should be repeated until all of the content is dissolved. User should perform the measurement on the dissolved material as quickly as possible. If it is necessary to keep the dissolved material for later measurements, it should be portioned into the small volumes and stored at temperatures equal to or lower than -20 °C in the dark. Subsamples should be stored in the bottles resistive to volatilization and sun light.

Minimum Sample Intake

The minimum sample intake suggested for the reconstituted sample is 400 μ L.

NATIONAL METROLOGY INSTITUTE

Use of the Certified Value

For assessing the method performance, the measured values of the CRMs are compared with the certified values ^[13]. The procedure can be described briefly as follows:

- Calculate the absolute difference between mean measured value and the certified value (Δ_m).
- Combine measurement uncertainty (u_{meas}) with the uncertainty of the certified value (u_{CRM}) :

$$u_{\Delta} = \sqrt{u_{meas}^2 + u_{CRM}^2}$$

• Calculate the expanded uncertainty (U_{Δ}) from the combined uncertainty (u_{Δ}) using a coverage factor of two (k = 2), corresponding to a confidence level of approximately 95%.

If $\Delta_m \leq U_{\Delta}$, then it is assumed that there is no significant difference between the measurement result and the certified value at 95% confidence level.

ACKNOWLEDGMENT

Authors gratefully acknowledge the laboratories participated in the interlaboratory comparison study.

REFERENCES

- 1. ISO Guide 34, General requirements for the competence of reference materials producers, International Organization for Standardization, Geneva, Switzerland, 2009.
- 2. ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement, (GUM 1995), International Organization for Standardization, Geneva, Switzerland, 2008.
- 3. Özkan B., Döneray H., Çocuk sağlığı ve Hastalıkları Dergisi 54(2011), 99.
- 4. Holick, M. F.; Chem, T. C.; AM. Journal of Clinical Nutrition (2008), 87.
- 5. Thorne J, Campbell MJ. *Proceedings of the Nutrition Society*. 67,2 (2008), 115.
- 6. Moreno J, Krishnan AV, Feldman D. *Journal of Steroid Biochemistry and Molecular Biology* 97(1–2) (2005), 31.
- 7. Holt PR, Arber N, Halmos B, et al. *Cancer Epidemiology, Biomarkers, and Prevention*, 11(1) (2002); 113.
- 8. Deeb KK, Trump DL, Johnson CS. *Nature Reviews Cancer*, 7(9) (2007), 684.
- 9. TRaNS, version 1- Random Stratified Sample Selection Software, UME 2012.
- 10. Linsinger, T.P., Pauwels, J., Van der Veen, A.M.H., Schimmel H., Lamberty, A., *Accreditation and Quality Assurance*, 6 (2001), 20.
- 11. Lamberty, A., Schimmel, H., Pauwels, J. *Fresenius' Journal of Analytical Chemistry*. 361 (1998), 395.

NATIONAL METROLOGY INSTITUTE

- 12. Linsinger, T.P., Pauwels, J., Lamberty, A., Schimmel, H., Van der Veen, A.M.H., Siekmann, L., *Fresenius' Journal of Analytical Chemistry*, 370 (2001), 183.
- 13. Linsinger, T.P.J. *ERM Application Note1*, July 2005.

REVISION HISTORY

Date	Remarks
05.03.2015	First issue.
31.08.2016	Material is recertified with a new characterisation study. "Commutability" and "Scope of Application" informations are added. Density information is added, certified values and uncertainties calculated in ng/mL unit is presented.

ANNEX 1: Details of ID-LCMS Technique

Sample was dissolved with 2 mL of deionized water (\geq 18 M Ω). 400 µL portion of this solution was transferred into an Eppendorf tube by weighing. 500 µL saturated salt solution and 400 µL, 0.5 mg/L 25 Hydroxy Vitamin D₂-d3 (IS) and 25 Hydroxy Vitamin D₃-d3 (IS) solution were added respectively. The content was mixed with vortex for 10 s. and was centrifuged for 4 min at 12000xg. 200 µL was taken from the upper layer and diluted by 200 µL deionized water, mixed with vortex and 100 µL of this solution was injected to LC-MS.

Name of the Component	Producer	Model
HRMS	Thermo	Q Exactive Orbitrap
HPLC	Thermo	Ultimate 3000
HPLC column	Phenomenex	Luna PFP (150 mm x 2 mm i.d., 5.0 µm)

Table 18. Properties of LC-MS Instrument

Table 19. LC parameters

Name	Value
Column Temperature	30° C
Mobile Phase	Methanol: Water (0.1% Formic acid) (82:18)
Flow rate	0.35 mL/min, Isocratic

NATIONAL METROLOGY INSTITUTE

Table 20. MS Parameters

Analyte	RT [min]	MH+
25-hydroxy vitamin D ₃	7.64	383.3302
25-hydroxy vitamin D ₃ -d ₃	7.64	386.3486
25-hydroxy vitamin D ₂	8.33	395.3302
25-hydroxy vitamin D ₃ -d ₃	8.33	398.3484

Table 21. MS Parameters

Parameter	Value
Ionization Mode	APCI +
Sheath Gas Flow Rate	35
Aux Gas Flow	10
Sweep Gas	0
Discharge Current (µA)	5

ANNEX 2: Details of ID- LCMS/MS Technique

Sample was dissolved with 2 mL of deionized water (\geq 18 M Ω). 400 µL portion of this solution was transferred into an Eppendorf tube by weighing. 500 µL saturated salt solution and 400 µL, 0.5 mg/L 26,26,26,27,27,27, 25-hydroxy vitamin D3-d6 (IS) solution was added respectively. The content was mixed with vortex for 10 s. and was centrifuged for 4 min at 12000xg. 200 µL was taken from the upper layer and diluted by 200 µL deionized water, mixed with vortex and 100 µL of this solution was injected to LC-MS/MS.

Name of the Component Producer		Model
Triple Quadrupole LC-MS/MS	ZIVAK Technologies®	Tandem Gold
Dual HPLC pump	ZIVAK Technologies®	Tandem Gold
HPLC column	Phenomenex	Luna PFP (150 mm x 2 mm i.d., 5.0 µm)
Degasser	ZIVAK Technologies®	Tandem Gold
Autosampler	ZIVAK Technologies®	Tandem Gold

Table 22. Properties of LC-MS/MS Instrument

NATIONAL METROLOGY INSTITUTE

Table 23. LC parameters

Name	Value
Column Temperature	Room temperature
Mobile Phase	Methanol: Water (0.1% Formic acid) (82:18)
Flow rate	0.35 mL/min, Isocratic

Table 24. MS/MS Scanning Parameters

Analyte	RT [min]	MH+	MS/MS	CE [V]	Dwell [s]
25-hydroxy vitamin D ₃	7.09	383.2	257.1	16	0.075
25-hydroxy vitamin D ₃ -d ₆	7.09	389.3	263.1	16	0.075
25-hydroxy vitamin D ₂	7.78	395.3	269.0	18	0.075

Table 25. MS/MS Parameters

Parameter	Value
Ionization Mode	APCI +
API Nebulizer Gas Pressure	50 psi
Dryer Gas Temperature, Pressure	300 °C, 20 psi
Vaporizer Gas Temperature, Pressure	350 °C, 12 psi
Scan Time	0.450 s
Shield Voltage	+ 600 V
Corona Voltage	10 V
Capillary Voltage	60 V
Detector	+ 1600 V
Collision Gas Pressure	2.25 mTorr
Chamber Temperature	65 °C
Mass Peak width	1.5 amu
Quad 1	1.5 amu
Quad 3	1.5 amu

ANNEX 3: Details of HPLC-UV Technique

400 μ L of dissolved sample was weighed and transferred into an Eppendorf tube. 500 μ L of saturated salt solution and 400 μ L dodecanophenone (IS) solutions were added. The sample was mixed with vortex for 10 s. and then it was centrifuged for 4 min at 12000xg and room temperature. 200 μ L of upper phase was transferred to the injection vial and 50 μ L of this solution was injected to instrument.

NATIONAL METROLOGY INSTITUTE

Table 26. Properties of HPLC-UV Instrument

Name of the Component	Producer	Model
Detector	Thermo FINNIGAN®	Surveyor
Autosampler	Thermo FINNIGAN [®]	Surveyor
Pump	Thermo FINNIGAN®	Surveyor
Column	ZIVAK Technologies®	Vitamin D2/D3 (100 mm x 3 mm, 5.0 µm)

Table 27. HPLC Autosampler Parameters

Autosampler Temperature	4 °C
Injection Volume	50 µL
Injection Loop Volume	100 µL

Table 28. LC-UV Parameters

Column Temperature	Room temperature	
Mobile Phase	Methanol:Acetonitrile (70:30)	
Wavelength	264 nm	
Flow Rate	1 (mL/min), Isocratic	

ANNEX 4: Reported Results for the Interlaboratory Study

Table 29. Measurement results for interlaboratory study obtained by LC-MS or LC-MS/MS.

Lab. No	Mass Fraction [ng/g]	
	25-hydroxy vitamin D ₂	25-hydroxy vitamin D ₃
1	47.42	46.29
1	49.85	47.75
2	49.42	46.94
2	50.76	46.87
3	46.38	44.14
4	51.93	49.97
4	49.56	47.08
Mean	49.33	47.01